

1. Find the equation of the line passing through $(6,5)$ and perpendicular to the line $y=3 x+4$.
Gradient of perpendicular line $=-\frac{1}{3} 0$
$y=-\frac{1}{3} x+c$
The line passes through $(6,5)$ so:
$5=\left(-\frac{1}{3} \times 6\right)+c$
$5=-2+c$
$c=7$
$y=-\frac{1}{3} x+7 \quad 0$
2. Rearrange the following expressions in descending order if:
a^{-2}
$a^{\frac{1}{2}}$
a^{0}
$a^{-\frac{1}{2}}$
i) $\quad a=16$
$16^{-2}=\frac{1}{256}$ © $16^{\frac{1}{2}}=40 \quad 16^{0}=10 \quad 16^{-\frac{1}{2}}=\frac{1}{4}$ ©
Descending order:

$$
\begin{equation*}
a^{\frac{1}{2}} a^{0} \quad a^{-\frac{1}{2}} \quad a^{-2} \quad \text { correct order } \tag{5}
\end{equation*}
$$

ii) $\quad a=\frac{1}{81}$
$\left(\frac{1}{81}\right)^{-2}=\left(\frac{81}{1}\right)^{2}=81^{2} 0\left(\frac{1}{81}\right)^{\frac{1}{2}}=\frac{1}{9} 0\left(\frac{1}{81}\right)^{0}=1^{0}\left(\frac{1}{81}\right)^{-\frac{1}{2}}=\left(\frac{81}{1}\right)^{\frac{1}{2}}=90$
Descending order:

$$
\mathbf{a}^{-2} \mathbf{a}^{-\frac{1}{2}} \quad \mathbf{a}^{0} \quad \mathbf{a}^{\frac{1}{2}} \quad \text { correct order }
$$

3. Make t the subject of the formula in each case:
i) $P=\frac{4}{t}$

$$
\begin{equation*}
t=\frac{4}{P} \tag{1}
\end{equation*}
$$

ii) $\mathrm{W}=\frac{2+3 \mathrm{t}}{\mathrm{t}}$
$t W=2+3+0$
$t W-3 t=2$
(1) $t(W-3)=2$
$t=\frac{2}{W-3}$
iii) $F=\frac{s-t}{t}$
$t F=s-t$ (1)
$t F+t=s$
(1) $t(F+1)=s$
$t=\frac{s}{F+1}$
4. The volume of a splogoid is directly proportional to the cube of the diameter
When the volume is $324 \mathrm{~cm}^{3}$, the diameter is 6 cm .
i) Find a formula for the volume of a splogoid, V , in terms of the diameter, d.
$V \propto d^{3}$
$\mathrm{V}=\mathrm{kd}^{3}$ (1)
$324=k 6^{3}=216 k$
$k=\frac{324}{216}=\frac{3}{2} \quad \Rightarrow \quad V=\frac{3 d^{3}}{2} \quad$ ©
ii) Find the diameter of a splogoid with volume $12 \mathrm{~cm}^{3}$

- $12=\frac{3 d^{3}}{2} \Rightarrow 24=3 d^{3} \Rightarrow d^{3}=8 \Rightarrow d=2$

5. w is inversely proportional to the positive square root of t. When $w=5, k=100$
i) Find a formula linking w and k
$w<\frac{1}{\sqrt{t}}$
$w=\frac{k}{\sqrt{\boldsymbol{t}}}$ (
$5=\frac{k}{\sqrt{100}}=\frac{k}{10}$
$k=5 \times 10=50 \Rightarrow w=\frac{50}{\sqrt{t}}$ ©
ii) Using your formula find:
a) w when $t=\frac{1}{4}$

$$
w=\frac{50}{\sqrt{\frac{1}{4}}}=\frac{50}{\frac{1}{2}}=100
$$

b) k when $w=10$

- $10=\frac{50}{\sqrt{t}}$
$\sqrt{\boldsymbol{t}}=\frac{50}{10}=5$

$$
\begin{equation*}
t=\mathbf{5}^{2}=\mathbf{2 5} \tag{4}
\end{equation*}
$$

6. Prove that the sum of three consecutive numbers is always a multiple of 3 .

Let $n, n+1$ and $n+2$ represent the three consecutive numbers.
Sum $=n+n+1+n+2=3 n+3=3(n+1)$.
The sum is always a multiple of three. (1)
7. The graph of $y=x^{2}+2 x-8$ is shown below:
$y=x$

Use the graph to solve the following equations:
i) $x^{2}+2 x-8=0$

$$
x=-4 \text { and } x=2
$$

ii) $x^{2}+2 x-8=-4 \quad$ (1) for drawing and labelling the line $y=-4$

$$
x=-3.2(\pm 0.1) \text { and } x=1.2(\pm 0.1)
$$

iii)

$$
\begin{aligned}
& x^{2}+2 x-10{ }^{1+2}=0+2 \\
& x^{2}+2 x-8=2 \\
& x=-4.3(\pm 0.1) \text { and } x=2.3(\pm 0.1)
\end{aligned}
$$

iv) $x^{2}+2 x-8=x$ (1) for drawing and labelling the line $y=x$

$$
x=-3.4(\pm 0.1) \text { and } x=2.4(\pm 0.1)
$$

v)

8. Factorise the following:
i) $x^{2}-36=(x+6)(x-6)$
ii) $\quad 2 a^{2}-50=2\left(a^{2}-25\right)=2(a+5)(a-5)$
iii) $\quad 4 s^{2}-9 t^{2}=(2 s+3 t)(2 s-3 t)$
iv) $2 x^{2}+7 x+3=(2 x+1)(x+3)$
v) $3 y^{2}+y-4=(3 y+4)(y-1)$

(1) (1) (1)

vi) $5 x^{2}-11 x+2=(5 x-1)(x-2)$
9. i) Simplify $\frac{4}{\mathrm{x}}+\frac{6}{\mathrm{x}+2}$
$=\frac{\overbrace{()^{x+2)}+6 x}^{x(x+2)}}{\underbrace{0}_{0}}=\frac{4 x+8+6 x}{x(x+2)}=\frac{10 x+8}{x(x+2)})$
ii) Hence, or otherwise, solve $\frac{4}{x}+\frac{6}{x+2}=2$
$\left.\frac{10 x+8}{x(x+2)}=2\right] 0$
$10 x+8=2 x(x+2)^{0}$
$10 x+8=2 x^{2}+4 x$
$0=2 x^{2}-6 x-8$
$0=(2 x+2)(x-4)$
$x=-1$ or $x=4$
©
©
10. Solve the following, giving your answers to 1 decimal place.
i) $x^{2}+5 x+1=0$

$$
\begin{aligned}
& x=\frac{-5 \pm \sqrt{5^{2}-(4 \times 1 \times 1)}}{2}=\frac{-5 \pm \sqrt{21}}{20} \\
& x=-0.2 \text { or } x=-4.8(1 \mathrm{dp})
\end{aligned}
$$

ii) $\quad y^{2}-10 y+4=0$

$$
\begin{aligned}
& y=\frac{10 \pm \sqrt{(-10)^{2}-(4 \times 1 \times 4)}}{2}=\frac{10 \pm \sqrt{100-16}}{2} \\
& y=\frac{10 \pm \sqrt{84}}{20} \\
& y=9.6 \text { or } y=0.4 \text { (to } 1 \mathrm{dp})
\end{aligned}
$$

iii) $2 x^{2}+13 x-5=2$

$$
\begin{align*}
& x=\frac{-13 \pm \sqrt{13^{2}-(4 \times 2 x(-5))}}{0}=\frac{-13 \pm \sqrt{169+40}}{4} \\
& x=\frac{-13 \pm \sqrt{209}}{4} \\
& x=0.4 \text { or } x=-6.9(\text { to } 1 \mathrm{dp}) \tag{15}
\end{align*}
$$

11. Meryl is solving the quadratic equation $2 x^{2}-10 x-8=0$ using the quadratic formula.

The first part of her solution is shown below:

Find four mistakes with Meygl's solution.

It should be +64 not -64 ($-4 \times 2 \times-8$) $=+64$
(4)
12. Solve the following by completing the square, giving your answers to 1 decimal place.
ii) $x^{2}+6 x+2=0$

$$
\begin{aligned}
& (x+3)^{2}-9+2=0 \\
& (x+3)^{2}=7^{0} \\
& x+3 \overline{\overline{0}^{ \pm}} \mathbf{7} \\
& x=-3 \pm \sqrt{7} \\
& x=-0.4 \text { or } x \overline{\overline{0}}-5.6 \text { (to } 1 \mathrm{dp} \text {) }
\end{aligned}
$$

iii) $y^{2}+y-1=0$

$$
\begin{align*}
& \left(y+\frac{1}{2}\right)^{2}-\frac{1}{4}-1=0 \\
& \left(y+\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& y+\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \tag{10}\\
& y=-\frac{1}{2} \pm \sqrt{\frac{5}{4}} \\
& y=-0.6 \text { or } y=-1.6 \text { (to } 1 \mathrm{dp})
\end{align*}
$$

13.

a) Show that the area of the shape is given by the expression $6 x^{2}+12 x-16$.

```
Area \(A=2 x(3 x+2)=6 x^{2}+4 x\) (1)
Area \(B=4(2 x-4)=8 x-161\)
Total Area \(=(\underbrace{\left(6 x^{2}+4 x\right)+(8 x-16)}=6 x^{2}+12 x-16\)
©
```

b) If the area of the shape is $20 \mathrm{~cm}^{2}$, find the length of the longest side.
\square correct use of $\quad x=\frac{-2 \pm \sqrt{2^{2}-(4 x 1 x(-6))}}{2} \quad x=1.64575 \ldots$. or $x=-3.645751311$
the quadratic
formula $\quad x=\frac{-2 \pm \sqrt{4+24)}}{2}=\frac{-2 \pm \sqrt{28}}{2}, ~$

$$
x=1.64575 \ldots . \text { or } x=-3.645751311
$$

Makes no sense in this context

Longest side $=2 x+4=(2 \times 1.64575 \ldots)+4=7.29$ (to 2 dp)
14. Match the quadratic function to the correct graph, giving reasons for your

Equation: $y=x^{2}+8 x+16$
Reason: $x^{2}+8 x+16=(x+4)^{2}$ (1) - only one intersection with the x axis at $x=-4$ (1)

Equation: $y=x^{2}-9 x+16$
Reason: using the formula $x^{2}-12 x+16=0$ has two solutions (1) $x=2.4$ and $x=6.6$ - two intersections with the x axis at these values.

Equation: $y=x^{2}-6 x+16$
Reason: $x^{2}-6 x+16=0$ can not be (1) solved using the formula (negative square root!) and so the graph does not cross the x axis
(1)

Equation: $y=x^{2}+10 x+16$
Reason: $x^{2}+10 x+16=(x+2)(x+8)-$ two intersections with the x axis at x (1) $=-2$ and $x=-8$

Skill	Qu	0	0
I can find the equation of a perpendicular line	1		
I can evaluate algebraic expressions involving negative and fractional powers	2		
I can rearrange more complex formulae including when variables are given twice	3		
I can solve direct proportion problems	4		
I can solve inverse proportion problems	5		
I can prove simple statements	6		
I can solve quadratic equations graphically	7		
I can factorise quadratics using the difference of two square	8 i,ii,iii		
I can factorise harder quadratics (a>1)	$8 \mathrm{iv}, \mathrm{v,vi}$		
I can simplify and solve simple equations involving algebraic fractions	9		
I can solve quadratic equations using the quadratic formula	$10,11,13$		
I can solve simple quadratic equations using completing the square	$12,(13)$		
I can sketch the graphs of quadratic functions of the form $y=x^{2}+b x+c$	14		

() Yippee!! - I got all the questions correct.
: I made mistakes and need to practise this topic more.
Top 3 topics I need to revise are
©
\odot
©

If your score is:

91-130 - Well done. You are definitely working at grade A with your algebra skills. Bring on the A*!

45-90 - Promising work - make sure you ask for help and revise the topics that you had difficulty with. You can still get that A !!!

0-45 - Serious revision and help is needed if you are going to get that A. Sort it out now. Don't wait any longer

