

1. Find the equation of the line passing through (6,5) and perpendicular to the line y = 3x + 4.

Gradient of perpendicular line = $-\frac{1}{3}$ $\mathbf{y} = -\frac{1}{3}\mathbf{x} + \mathbf{c} \quad \mathbf{0}$ The line passes through (6,5) so: $5 = (-\frac{1}{3} \times 6) + c$ 5 = -2+c c = 7 $\mathbf{y} = -\frac{1}{3}\mathbf{x} + 7 \quad \mathbf{0}$

2. Rearrange the following expressions in descending order if:

$$\mathbf{a}^{-2} \qquad \mathbf{a}^{\frac{1}{2}} \qquad \mathbf{a}^{0} \qquad \mathbf{a}^{-\frac{1}{2}}$$
i) $a = 16$
 $\mathbf{16}^{-2} = \frac{1}{256} \quad \mathbf{16}^{\frac{1}{2}} = \mathbf{4} \quad \mathbf{0} \quad \mathbf{16}^{0} = \mathbf{10} \quad \mathbf{16}^{-\frac{1}{2}} = \frac{1}{4} \quad \mathbf{0}$
Descending order:
 $\mathbf{a}^{\frac{1}{2}} \quad \mathbf{a}^{0} \quad \mathbf{a}^{-\frac{1}{2}} \quad \mathbf{a}^{-2} \quad \mathbf{0} \text{ correct order}$
(5)
ii) $a = \frac{1}{81}$
 $(\frac{1}{81})^{-2} = (\frac{81}{1})^{2} = 81^{2} \quad \mathbf{0} \quad (\frac{1}{81})^{\frac{1}{2}} = \frac{1}{9} \quad (\frac{1}{81})^{0} = \mathbf{10} \quad (\frac{1}{81})^{-\frac{1}{2}} = (\frac{81}{1})^{\frac{1}{2}} = 9 \quad \mathbf{0}$
Descending order:

(4)

$$\mathbf{a}^{-2} \quad \mathbf{a}^{-\frac{1}{2}} \quad \mathbf{a}^{0} \quad \mathbf{a}^{\frac{1}{2}} \bullet \text{ correct order}$$

3. Make t the subject of the formula in each case:

i)
$$P = \frac{4}{t}$$

 $t = \frac{4}{p} \bullet$
(1)
ii) $W = \frac{2+3t}{t}$
 $tW = 2+3t \bullet$
 $tW - 3t = 2$
 $\bullet \quad t(W - 3) = 2$
 $t = \frac{2}{W - 3} \bullet$
(3)
iii) $F = \frac{s-t}{t}$
 $tF = s - t \bullet$
 $tF + t = s$
 $\bullet \quad t(F + 1) = s$
 $t = \frac{s}{F + 1} \bullet$
(3)

4. The volume of a splogoid is directly proportional to the cube of the diameter

When the volume is 324cm³, the diameter is 6cm.

i) Find a formula for the volume of a splogoid, V, in terms of the diameter, d.
 Va d³

$$V = kd^{3} \bullet$$

$$324 = k6^{3} = 216k$$

$$k = \frac{324}{216} = \frac{3}{2} \implies V = \frac{3d^{3}}{2} \bullet$$

(2)

ii) Find the diameter of a splogoid with volume 12cm³

$$12 = \frac{3d^3}{2} \Rightarrow 24 = 3d^3 \Rightarrow d^3 = 8 \Rightarrow d = 2$$

(2)

- 5. w is inversely proportional to the positive square root of t. When w = 5, k = 100
 - i) Find a formula linking w and k

$$w \alpha \frac{1}{\sqrt{t}}$$
$$w = \frac{k}{\sqrt{t}} \bullet$$
$$5 = \frac{k}{\sqrt{100}} = \frac{k}{10}$$

$$\mathbf{k} = \mathbf{5} \times \mathbf{10} = \mathbf{50} \quad \Rightarrow \quad \mathbf{w} = \frac{\mathbf{50}}{\sqrt{\mathbf{t}}} \mathbf{0}$$

1	2	۱
ľ	4	1

ii) Using your formula find:

a) w when t =
$$\frac{1}{4}$$

w = $\frac{50}{\sqrt{\frac{1}{4}}} = \frac{50}{\frac{1}{2}} = 100$ **•**

b) k when w = 10

$$10 = \frac{50}{\sqrt{t}}$$

$$\sqrt{t} = \frac{50}{10} = 5$$

$$t = 5^{2} = 25$$

(4)

6. Prove that the sum of three consecutive numbers is always a multiple of 3.

Let n, n+1 and n+2 represent the three consecutive numbers. Sum = n + n + 1 + n + 2 = 3n + 3 = 3(n + 1).

The sum is always a multiple of three. $oldsymbol{0}$

7. The graph of $y = x^2 + 2x - 8$ is shown below:

Use the graph to solve the following equations:

- i) $x^2 + 2x 8 = 0$
 - x = -4 and x = 2
- iii) $x^2 + 2x 10 \downarrow +2 = 0 +2$ $x^2 + 2x - 8 = 2$ $x = -4.3 (\pm 0.1)$ and $x = 2.3 (\pm 0.1)$ for correct manipulation for drawing and labelling the line y=2 $x = -4.3 (\pm 0.1)$ and $x = 2.3 (\pm 0.1)$

iv) $x^2 + 2x - 8 = x$ for drawing and labelling the line y=x x = -3.4 (±0.1) and x = 2.4 (±0.1)

v) $x^2 + x$ $x^2 + 2x$ +x -3 $x^2 + 2x$ -3 +x -3 -8 +z = x - 5 \bullet for correct manipulation of x = x - 5 \bullet for correct manipulation of constant \bullet for drawing and labelling the line y=x-5(17) 8. Factorise the following:

0 x² - 36 = (x+6)(x-6) i)

000 0 0

2a² - 50 = 2(a² - 25) = 2(a+5)(a-5) ii)

0 0 0 0

iv)
$$2x^2 + 7x + 3 = (2x + 1)(x + 3)$$

v)
$$3y^2 + y - 4 = (3y + 4)(y - 1)$$

0 0 0 0

vi) $5x^2 - 11x + 2 = (5x - 1)(x - 2)$

(21)

9. i) Simplify
$$\frac{4}{x} + \frac{6}{x+2}$$

= $\frac{4(x+2)+6x}{x(x+2)} = \frac{4x+8+6x}{x(x+2)} = \frac{10x+8}{x(x+2)}$ (4)

ii) Hence, or otherwise, solve $\frac{4}{x} + \frac{6}{x+2} = 2$

$$\frac{10x+8}{x(x+2)} = 2 \quad 0$$

$$10x+8 = 2x(x+2)^{\circ}$$

$$10x+8 = 2x^{2} + 4x$$

$$0 = 2x^{2} - 6x - 8 ^{\circ}$$

$$0 = (2x+2)(x-4)$$

$$x = -1 \text{ or } x = 4$$

$$0 ^{\circ}$$

(5)

10. Solve the following, giving your answers to 1 decimal place.

i)
$$x^{2} + 5x + 1 = 0$$

 $x = \frac{-5 \pm \sqrt{5^{2} - (4 \times 1 \times 1)}}{2} = \frac{-5 \pm \sqrt{21}}{20}$
 $x = -0.2 \text{ or } x = -4.8 \text{ (1dp)}$

ii)
$$y^2 - 10y + 4 = 0$$

 $y = \frac{10 \pm \sqrt{(-10)^2 - (4 \times 1 \times 4)}}{2} = \frac{10 \pm \sqrt{100 - 16}}{2}$
 $y = \frac{10 \pm \sqrt{84}}{20}$
 $y = 9.6 \text{ or } y = 0.4 \text{ (to 1dp)}$

2

iii)
$$2x^2 + 13x - 5 =$$

$$x = \frac{-13 \pm \sqrt{13^2 - (4 \times 2 \times (-5))}}{0 \qquad 0 \qquad 4} = \frac{-13 \pm \sqrt{169 + 40}}{4}$$
$$x = \frac{-13 \pm \sqrt{209}}{4 \qquad 0}$$
$$x = 0.4 \text{ or } x = -6.9 \text{ (to 1 dp)}$$

11. Meryl is solving the quadratic equation $2x^2 - 10x - 8 = 0$ using the quadratic formula.

The first part of her solution is shown below:

12. Solve the following by completing the square, giving your answers to 1 decimal place.

ii)
$$x^{2} + 6x + 2 = 0$$

 $(x + 3)^{2} - 9 + 2 = 0$
 $(x + 3)^{2} = 7^{\circ}$
 $x + 3 = \pm \sqrt{7}$
 $x = -3 \pm \sqrt{7}$
 $x = -0.4 \text{ or } x = -5.6 \text{ (to 1dp)}$
iii) $y^{2} + y - 1 = 0$
 $(y + \frac{1}{2})^{2} - \frac{1}{4} - 1 = 0$
 $(y + \frac{1}{2})^{2} = \frac{5}{4}^{\circ}$
 $y + \frac{1}{2} = \pm \sqrt{\frac{5}{4}}$
 $y = -\frac{1}{2} \pm \sqrt{\frac{5}{4}}$
 $y = -\frac{1}{2} \pm \sqrt{\frac{5}{4}}$
 $y = -\frac{1}{2} \pm \sqrt{\frac{5}{4}}$
 $y = -0.6 \text{ or } y = -1.6 \text{ (to 1dp)}$
(10)

S A LOMAX 2006

a) Show that the area of the shape is given by the expression $6x^2 + 12x - 16$.

Area A =
$$2x(3x+2) = 6x^2 + 4x0$$

Area B = $4(2x-4) = 8x - 160$
Total Area = $(6x^2 + 4x) + (8x - 16) = 6x^2 + 12x - 16$
0
(3)

b) If the area of the shape is 20cm², find the length of the longest side.

$$20 = 6x^{2} + 12x - 16$$

$$0 = 6x^{2} + 12x - 36$$

$$0 = x^{2} + 2x - 6$$
 quadratic = 0

$$x = \frac{-2 \pm \sqrt{2^{2} - (4x1x(-6))}}{2}$$

$$1 \text{ correct use of } 2$$

$$x = 1.64575.... \text{ or } x = -3.645751311$$

$$x = 1.64575.... \text{ or } x = -3.645751311$$

$$x = 1.64575.... \text{ or } x = -3.645751311$$

Makes no sense in this context

Longest side = 2x + 4 = (2x1.64575...) + 4 = 7.29 (to 2dp)

14. Match the quadratic function to the correct graph, giving reasons for your answer.

Equation: **y**= **x**² + 8**x** + 16

Reason: $x^2 + 8x + 16 = (x+4)^2 \bullet$ - only one intersection with the x axis at x = -4 \bullet

Equation: $y = x^2 - 9x + 16$

Reason: using the formula $x^2 - 12x + 16=0$ has two solutions **1** x=2.4 and x=6.6 - two intersections with the x axis at these values.

A

Equation: **y** = **x**² - **6x** + **16** •

Reason: x² - 6x + 16=0 can not be **•** solved using the formula (negative square root!) and so the graph does not cross the x axis **•**

Equation: $y = x^2 + 10x + 16$

Reason: $x^2 + 10x + 16 = (x+2)(x+8) - two intersections with the x axis at x <math>\bullet$ = -2 and x = -8

(12)

Did you 'Make the Grade'?

Skill	Qu	\odot	$\overline{\mathbf{S}}$
I can find the equation of a perpendicular line			
I can evaluate algebraic expressions involving negative and fractional powers			
I can rearrange more complex formulae including when variables are given twice			
I can solve direct proportion problems			
I can solve inverse proportion problems			
I can prove simple statements			
I can solve quadratic equations graphically			
I can factorise quadratics using the difference of two square			
I can factorise harder quadratics (a>1)			
I can simplify and solve simple equations involving algebraic fractions			
I can solve quadratic equations using the quadratic formula			
I can solve simple quadratic equations using completing the square			
I can sketch the graphs of quadratic functions of the form $y = x^2 + bx + c$			

- ☺ Yippee‼ I got all the questions correct.
- \odot I made mistakes and need to practise this topic more.

Top 3 topics I need to revise are	
0	
0	
\odot	

If your score is:

- 91 130 Well done. You are definitely working at grade A with your algebra skills. Bring on the A*!
- 45-90 Promising work make sure you ask for help and revise the topics that you had difficulty with. You can still get that A !!!
- 0-45 Serious revision and help is needed if you are going to get that A. Sort it out now. Don't wait any longer