Welcome to a 2008 UKMT TMC Regional Final

Here are some warm-up questions to get your brains working. Discuss them with each other and with your teacher. NO CALCULATORS!

Question

Find two different ways of expressing 4104 as the sum of two cubes.

Question 3

Emily does not want to admit her age. She says 'I'm 45 years old, if you don't count Saturdays or Sundays'.

What is Emily's true age?

Question 5

U	U	U	U
K	K	K	K
M	M	M	M
T	T	T	T

Can you find the 68 ways to spell out 'UKMT' through this grid? You may move across an edge or through a corner.

QUESTION 7

If $a^{*} b$ means 'square a and subtract b ', what is the value of $(-3) *(-5)$?

2uestion 9

How many different shapes of isosceles triangles have at least one side of length 2 cm and an area of $1 \mathrm{~cm}^{2}$?

Question 2

Which numbers are increased by 500% when they are squared?

Quesfion 4

The difference between a three-digit number and a two-digit number is 987 . How many pairs of numbers have this property?

\mathfrak{Q} uestion 6

	4	17
		x
5		

The diagram shows part of a magic square (in which the total for each row, column and diagonal is the same).
What is the value of x ?

Question 8

The diagonals of the faces of a cuboid are, in $\mathrm{cm}, \sqrt{ } 45, \sqrt{ } 52$ and 5 . What is its volume?

Starter Questions ~ ANSWERS

Question

$$
4104=\mathbf{1 5}^{3}+\mathbf{9}^{\mathbf{3}}=\mathbf{1 6}^{\mathbf{3}}+\mathbf{2}^{\mathbf{3}}
$$

Question 3

Emily is $\mathbf{6 3}$ years old, as $(45 \div 5) \times 7=63$.

Question 2

We need to solve $x^{2}=6 x$, so $x=\mathbf{0}$ or $\mathbf{6}$

Quesfion 4

There are THREE pairs:
999 and 12,
998 and 11,
997 and 10

Question 6

$$
x=6
$$

Question 8

Let the dimensions be $a, b, c \mathrm{~cm}$.

$$
a^{2}+b^{2}=45, b^{2}+c^{2}=52, a^{2}+c^{2}=25
$$

Hence $\left(a^{2}+b^{2}\right)+\left(b^{2}+c^{2}\right)-\left(a^{2}+c^{2}\right)=72$, giving $2 b^{2}=72$, so $b=6$, and $a=3, c=4$.

Therefore the volume is $\mathbf{7 2} \mathrm{cm}^{3}$.

2uestion 9

3 triangles. Taking 2 cm as base, each has height 1 cm . One triangle has just one 2 cm side, two have two 2 cm sides (one acute angled triangle, one obtuse angled triangle)

Question 10

About 142 round trips,
as $68000000 \div(240000 \times 2)=141.666 \ldots$

